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We shah  d iscuss  va r ious  ques t ions  connected with the cons t ruc t ion  of models ,  descr ib ing  the flow of 
a mixture  of a gas  and a po lyd i spe r se  condensate  with al lowance for coagulat ion of pa r t i c l e s .  The one-  
d imensional  approx imat ion  is used with the effects  of v i s cos i t y  and t h e r m a l  conduct ivi ty of the gas being 
taken  into account only in the descr ip t ion  of the g a s - p a r t i c l e  interact ion.  The p r e s e n t  approximat ion  c o r -  
responds ,  in pa r t i cu la r ,  to the case  of flow in Lava l  nozzles ,  where  the di f ference of the Reynolds numbers ,  
de te rmined  by a c h a r a c t e r i s t i c  nozzle d imension  (e.g., the radius  of the min imum c r o s s  section} and by the 
par t i c le  d iamete r ,  as  a rule,  jus t i f ies  such an approach  outside a c o m p a r a t i v e l y  thin boundary l aye r  at the 
nozzle wall. Special  at tention is given to the red is t r ibu t ion  of the momen tum and ene rgy  of  the pa r t i c l e s ,  
produced during coagulation.  In addition, a number  of points of a methodological  nature ,  in the opinion of 
the au thors  not finding sufficiently comple te  elucidation in the avai lable  l i t e r a tu re  on coagulat ion [1-9], a re  
ref ined.  

In the l i t e ra tu re  on coagulat ion publ ished at the p r e sen t  t ime ,  the red is t r ibu t ion  of the momentum and 
ene rgy  of the p a r t i c l e s  is e i ther  not cons ide red  at all  (of. [1, 3, 6], in which equations a re  obtained, d e t e r -  
mining only the evolution of the f rac t ional  composi t ion of the condensate) ,  or  it is pos tula ted  that the 
momen tum [2, 5] o r  momentum and ene rgy  [4, 7-9] of a par t i c le ,  fo rmed  during coagulation,  a r e  uni formly  
d is t r ibuted  among all  pa r t i c l e s  of a given size.  Such an assumpt ion  e i ther  should be cons ide red  as  the r e -  
sult  of an averag ing  p rocedure  (over the ve loc i t i es  and ene rg ie s  of p a r t i c l e s  of one size}, which is not in 
i t se l f  r igorous ,  or ,  as  noted in [10], supposes  the exis tence  of some  so r t  of mechan i sm for  exchange of 
momen tum and energy  between p a r t i c l e s  of ore  s ize ,  which could only happen with sufficiently frequent  
co l l i s ions  of the indicated pa r t i c l e s ,  not, however,  leading to coa lescence ,  and this  can  hardly  be cons ide red  
prac t icab le .  The re fo re ,  a comple te  solution p r e s u p p o s e s  the introduction of ve loc i ty  and t e m p e r a t u r e  d i s -  
t r ibut ion functions for  each m a s s  in terva l  along with the dis t r ibut ion function over  pa r t i c le  s ize,  as  is done 
in the absence  of coagulation,  e.g. ,  by Wil l iams [11]. Without wri t ing out the equations so obtained, we note 
that  the resu l t ing  s y s t e m  becom es  c o m m e n s u r a t e  in complex i ty  with (or even exceeds)  the s y s t e m  of equa-  
t ions in the kinetic theory  of gases .  This  c i r c u m s t a n c e  makes  the p rac t i ca l  use  of coagulat ion models  with 
mul t id imensional  dis t r ibut ion functions somewhat  p rob lemat ic  in the near  future at least .  

In connection with what was said above, it s e e m s  reasonab le  to cons ider  along with the well-known 
models  (e.g., the one adopted by Grishin  et al.  [4]} a model  built on the assumpt ion  that the excess  (or def i -  
cient) momentum and energy,  or ig inat ing with the pa r t i c l e s  produced as  a resu l t  of coagulat ion (or some 
pa r t  thereof) ,  is not d is t r ibuted  uni formly  among the pa r t i c l e s  of a given m a s s  in terval  but r a t he r  is t r a n s -  
f e r r e d  to the gas.  The val idi ty  of the assumpt ion  that  the excess  momentum and ene rgy  is comple t e ly  t r a n s -  
f e r r e d  to the gas for  pa r t i c l e s  of suff icient ly smal l  size is c o r r o b o r a t e d  by the following cons idera t ions .  

Let  the dynamic and t h e r m a l  re laxa t ion  t i m e s  of the p a r t i c l e s  Tf~ and Tq, which in the Stokes approx i -  
mat ion a r e  propor t iona l  to the square  of the pa r t i c l e  d iamete r ,  be smal l  in compar i son  with a c h a r a c t e r i s -  
tic flow t ime  (the l a t t e r  in the s ta t ionary  ca se  is defined as the ra t io  of a c h a r a c t e r i s t i c  l inear  d imension 
to a c h a r a c t e r i s t i c  velocity) .  Then, as shown, e.g.,  by Rannie [12], in the absence  of col l i s ions  between the 
pa r t i c l e s  the pa r t i c l e  p a r a m e t e r s  a r e  a lmos t  eve rywhe re  v e r y  c lose  to the co r respond ing  gas  p a r a m e t e r s ,  
differ ing f r o m  them by magni tudes  on the o rde r  of Tf and Tq. Moreover ,  the coeff ic ients  of the c o r r e s p o n d -  
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ing expansions in 7f  and ~-q a r e  propor t iona l  to the f i r s t  der iva t ives  of the gas ve loc i ty  and t e m p e r a t u r e  
with r e spec t  to the spat ia l  coordinate .  Thus, with an accu racy  to ~-f and ~-q inclusive,  the p a r a m e t e r s  of 
pa r t i c l e s  of one s ize  a lmos t  eve rywhere  do not depend on the prev ious  h i s to ry  of the motion of an individual 
par t ic le  and a r e  de te rmined  by the gas p a r a m e t e r s  and the i r  f i r s t  de r iva t ives  at the point of in teres t .  If, 
however,  for  some  reason  or  another  (e.g., due to externa l  action, col l is ion with o ther  pa r t i c l e s ,  etc.) the 
p a r a m e t e r s  of a par t ic le  should be apprec iab ly  different f r o m  thei r  "quas iequi l ibr ium w values ,  then by 
definition of •f and Tq the p r o c e s s  of smoothing out the ve loc i ty  and t e m p e r a t u r e  of such a pa r t i c le  takes  

PwleaC:ot:? ;n~idegth:lly, ~h:a:r:~a~fylfca~s~ffia~tned~e2t=i~qactes:eT~fti~dyT(qhe~dws~i~:h~ept;;i~eav~d~~ 

close in o rde r  of magnitude. 

In addition to the above let ~-f and ~q be smal l  a l so  in compar i son  with the mean f ree  t ime  of a p a r -  
t ic le  of a given mass  interval .  Th~n the ve loc i ty  and t e m p e r a t u r e  of a par t ic le ,  produced by the merg ing  
of s m a l l e r  pa r t i c les ,  will differ  f rom the co r respond ing  p a r a m e t e r s  of the pa r t i c l e s  of the same  m a s s  i n t e r -  
val ,  produced signif icantly ea r l i e r ,  only over  the length I f  and /q, which a re  smal l  in c o m p a r i s o n  with a 
cha rac t e r i s t i c  flow length and with the mean f ree  path of the pa r t i c l e s  I. Over  the indicated lengths the 
excess  (deficient) ve loc i ty  and energy  of the pa r t i c l e s  a re  t r a n s f e r r e d  (supplied) on account of the in t e rac -  
t ion with the gas,  which leads to a smoothing of the p a r a m e t e r s  of the pa r t i c l e s  within each  m a s s  interval .  
Herewith the gas exper i ences  an additional force  and ene rgy  effect  f r o m  the par t i c les .  We note that in the 
absence  of coagulat ion the above mechan i sm was cons ide red  by Marble [13] in p rob l ems  of flow of a po ly-  
d i spe r se  condensate  with col l is ions  of the pa r t i c l e s .  It is to be expected that with inc reas ing  par t i c le  s izes ,  
i .e. ,  with increas ing  l~ and lq in compar i son  with the mean f ree  path 1 and with a c h a r a c t e r i s t i c  d imension 
of the problem,  the di f ference between the above and the actual  mechan i sms  fo r  red is t r ibu t ing  the ene rgy  
and momentum of the pa r t i c l e s  grows.  Never the less ,  the use of this mechan i sm is just i f ied even in this 
case ,  espec ia l ly  if we cons ider  that the hypothesis  applied at the p resen t  t ime  that the ene rgy  and m o m e n -  
tum is  red is t r ibu ted  among the pa r t i c l e s  of each m a s s  interval ,  can  hardly be r igo rous ly  founded even in 
some kind of l imit ing cases ,  bea r ing  on flow in Laval  nozzles with coagulation.  In such ca se s ,  however,  it 
is  expedient to use at f i r s t  s e v e r a l  s implif ied models  (including the mode), based  on the red is t r ibu t ion  
hypothe sis) ,  since c o m p a r i s o n  of cor responding  re su l t s  can give some idea about the o rde r  of magnitude 
of the e r r o r s  involved in not introducing veloci ty  and t e m p e r a t u r e  dis tr ibut ion functions for  the pa r t i c l e s  
of  each fract ion.  

1. Let  us cons ider  the flow of a mixture  of gas  and a po lyd i sperse  condensate  in a Laval  nozzle,  
the c r o s s  sect ional  a r e a  of which we denote by F. The x axis  is d i rec t ly  along the axis  of the nozzle in 
the d i rec t ion  of the flow. The f rac t ional  composi t ion  of the condensate ,  i .e. ,  the dis t r ibut ion of the pa r t i c l e s  
with r e spec t  to size (the radius  r) or  m a s s  m is de te rmined  by the number  dis t r ibut ion function n (m). This 
is introduced such that  the number  of pa r t i c l e s  in a unit volume with m a s s  in the in terval  f r o m  m to m + 
dm is equal to n (m) dm. Along with n (m) we shall  use the loss  dis t r ibut ion function g (m), which is r e l a t ed  
to n (m) by the equation 

g (m) = mn (m) w (m) / W pw (1.1) 

and which when mult ipl ied by dm gives the m a s s  loss  of the same fract ion,  pass ing  through a unit c r o s s -  
sect ional  a r ea  of the nozzle (relat ive to the total  condensate  loss  WOw). In (1.1) p and w a re  the densi ty  
and veloci ty  of the gas,  W is a given constant ,  equal to the ra t io  of the m a s s  lo s ses  of the condensed and 
gas phases ,  and w (m) is the veloci ty  of the pa r t i c l e s  of the m a s s  in terval  in question. An a rgument  in 
pa ren theses  will henceforth denote that the co r respond ing  p a r a m e t e r  c h a r a c t e r i z e s  pa r t i c l e s  of the given 
m a s s  interval .  Thus, the re laxa t ion  lengths and mean  f ree  path length mentioned e a r l i e r  will be denoted 
by I f  (m), lq (m), a n d /  (m), the radius  of the pa r t i c l e s  by r (m), and the t e m p e r a t u r e ,  specific internal  
energy,  and total  energy  of the pa r t i c l e s  by T (m), e (m), and E (m) =e (m) +w 2 (m)/2. 

The equations descr ib ing  the change as  a function of x in the p a r a m e t e r s  of the pa r t i c l e s  of each 
m a s s  in terval  (including the dis t r ibut ion functions) and in the gas p a r a m e t e r s  a r e  obtained by applying 
the conserva t ion  of mass ,  momentum,  and energy  to the pa r t i c l e s  or  to the gas in a volume bounded by 
two c r o s s  sect ions  of the nozzle (at x and x+Ax,  where  Ax is smal l  c o m p a r e d  with a c h a r a c t e r i s t i c  d imen-  
t ion of the problem).  The flow is here  cons ide red  to be s ta t ionary ,  and ef fec ts  a s soc i a t ed  with phase  t r a n s i -  
t ions and with pa r t i c l e s  being prec ip i ta ted  out at the walls  a re  a s sumed  absent .  In th is  c a s e  the c o n s e r v a -  
tion of m a s s  for  the pa r t i c l e s  of the m a s s  in terval  (m, m +dm) is wri t ten in the f o r m  

A [Fmn (m) w (m) din] = R (m) m_FAxdm, 
R (m)~-- R + ( m ) - - R ' :  (m),-A~ = r (x+ Ax) - -9  (x) (1.2) 
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Here R + (m) dm and R-  (m) dm are  the numer ica l  ra tes  of production and disappearance of par t ic les  
of the mass  interval in question per  unit volume. The right side of (1.2) in accordance  with the definition of 
R+(m) and R-(m) gives the change per  unit t ime in the mass  of the par t ic les  in the mass  interval (m, m+ 
dm) in the volume FAx, included between the c r o s s  sections at x and x+Ax. The left side gives the differ-  
ence of the cor responding  mass  fluxes, passing (also per  unit time) through the indicated c r o s s  section. 

The express ions  for  R* (m) were obtained ear l ie r ,  e.g., by Grishin et al. [4]; however, it is of some 
expediency to cons ider  this question once more.  We begin with R-  (m), i.e., with the rate of disappearance 
of par t ic les  with mass  between m and m + dm. Loss  of par t ic les  f rom this mass  interval occurs  due to 
coll is ions and subsequent coagulation with par t ic les  of all other  mass  intervals.  The number of col l is ions 
of a par t ic le  f rom this mass  interval  with par t ic les  f rom the mass  interval (~, ~ § d~) in t ime At is equal 
to k (m, ~) n (~) d~At, where k (m, ~) is a function cal led the coagulation constant.  For  spherical  par t ic les ,  
ignoring the effects of the curva ture  of their  t r a jec to r ies ,  we assume [4] 

k (m, ~t) = ~ [r (m) § r (~t)] 2 I w (m) - -  w (~t) I (1.3) 

In accordance  with what has been said, one par t ic le  f rom the mass  interval (m, m +dm) exper iences  
in t ime At a number of col l is ions with par t ic les  of all other mass  intervals  equal to 

At ~ k (m, p~) n (~t) dbt 
0 

In this express ion and fur ther  on, ze ro  and infinity in the l imits  of integration in actuali ty denote the 
masse s  of the smal les t  and la rges t  par t ic les  of the condensate.  Hence, for the mean free t ime and path 
length ~- (m) and l (m) we obtain the express ions  

(1 .4 )  

0 

Par t i c l es  of the mass  interval in question t r a v e r s e  the interval Ax in t ime At = A x / w  (m). 
(m) n (m) dm of such par t ic les  per  unit t ime t r ave r se  the c r o s s  section at x, in the volume FAx 

Fn (m) h x  dm ~ k (m, ~) n (~) d~ 
0 

Since Fw 

par t ic les  of the given mass  interval coagulate per  unit time. Comparing the obtained express ion  with (1.2), 
we find 

~o 

•- (rn) = n (m) I k (m, ~) n (~) d~ 
0 

If coagulation occurs  with eve ry  coll is ion of the par t ic les ,  and this will be assumed henceforth,  then 
for (1.2) to be valid it is necessa ry  for the inequality Ax < l (m) to be satisfied, since otherwise not only the 
f i rs t  but also subsequent col l is ions of par t ic les ,  a l ready having disappeared owing to coagulation, would 
be included in the right side of (1.2). Since in fact (1.2) is not used, but ra ther  the differential equation 

d [Fn(m) w (m)]/dx = FR (m) (1.6) 

obtained f rom (1.2) for Ax --~ 0, the l imitation mentioned turns  out to be inessen t i a l  Inrea l i ty ,  in passing 
to the limit,  Ax as usual is taken to be nphysically" infinitesimally small.  In the present  case  in acco rd -  
ance with what has been said, this means  that Ax is small  in compar i son  with l (m) and with a c h a r a c t e r i s -  
tic dimension of the problem, but much bigger  than the distance between par t ic les .  

In obtaining the equation for  R + (m) it is neces sa ry  to consider  coll is ions leading to the format ion of 
par t ic les  in the mass  interval (m, m +dm) f rom par t ic les  of lower mass  intervals.  Let ~ be the mass  of the 
l e s se r  and ~~ the mass  of the l a rge r  (possibly equal to ~) of the colliding par t ic les  (in accordance  with this, 
with an accuracy  to smal l  t e rms  of a higher order ,  ~ < m/2).  In o rde r  that col l is ions of par t ic les  in the 
mass  interval  (/~, ~+d~) lead to the formation of par t ic les  in the pass  interval (m, m+dm) ,  the masses  of 
the colliding par t ic les  in the ~ ~  plane should co r respond  to the shaded para l le logram in Fig. 1 of a rea  
dmd~, where ~z2 ~ =m - ~ ,  tzl ~ =~2 ~ - d~ ,  ~z3 ~ =~1 ~ +din, and ~4 ~ =tz2 ~ +dm. Finding the number of col l is ions 
cor responding  to par t ic les  of mass  ~ and/z ~ f rom the indicated para l le logram,  then integrating over  ~ f rom 
0 to m/2,  and compar ing the express ion so obtained with the right side of (1.27, we a r r ive  at the equa t ion  
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R+(m)= I k(Ix, m--~)n(~)n(m--Ix)d~ (1.7) 
0 

We note that the present  equation is the same as that given by Grishin 
et al. [4], and the method by which it was obtained is s imi lar  to that used by 
Kuentzmann [5]. In addition, in the derivation of (1.7) only pair  col l is ions were 
considered,  i.e., simultaneous coll isions of three or  more par t ic les  were con-  
s idered to be unimportant. Here the number of coll is ions was computed by 
summing the number of coll isions,  experienced by the smal le r  par t ic les  [i.e., 
by par t ic les  in the  mass  interval (~t, g+dg)] .  Of course ,  the same quantity 
R + (m) is obtained by summing the coll isions of the l a rge r  of the colliding 
part icles .  This leads to the equation 

R + (m) = ~ k (Ix~ m - -  ~o) n (~~ n (m - -  Ix~ dIx ~ 
m / 2  

From here and f rom (1.7) it is not difficult to get the expression 

m 

R* (m) = 1/2 S k ~, m -- Ix) n (P0 n (m -- Ix) d~ (1.8) 
0 

equivalent to (1.7). We note, incidentally, that by vir tue of its definition the coagulation constant is s y m m e -  
tr ic ,  i.e., k (/~, m - g )  =k (m - g , g ) .  

Taking into account the equation of continuity for the gas phase 

Fpw = const (1.9) 

and the definition of the loss distribution function g (m), we can rewri te  equation (1.6) in the form 

dg (m) / dx = mR (m) / Wpw (R (m) -~ R + (m) -- R:- (m)) (1.10) 

Here the number distribution functions n (m), n (/~) . . . .  in (1.5) and (1.7) or  (1.8) can also be r e -  
placed by g (m), g (/~) . . . .  in accordance  with (1.1). 

2. The complete sys tem of flow equations along with the equation of continuity for  the gas (1.9) and 
the equation (1.10), describing the evolution of the fractional  composit ion of the condensate (according to the 
loss distribution function), includes the momentum and energy equations for the mixture components.  It 
has a l ready been pointed out that these are  found by applying the corresponding conservat ion  laws to the 
par t ic les  of each mass  interval and to the gas in the volume FAx. Here it is assumed,  as usual, that be-  
tween the gas and the par t ic les  there  takes place dynamical  and thermal  interactions,  due to the v iscos i ty  
and thermal  conductivity of the gas phase. Let  f (m) and g (m) be the force with which the gas acts  on the 
par t ic les  and the heat flux f rom the gas to the par t ic les  per  unit mass  of par t ic les  of the cor responding  
mass  interval,  where, as before,  the quantity in parentheses  is understood not as  an argument,  but as  an 
indication of the par t ic le  size (mass). We ignore the direct  thermal  and force interactions between the flux 
and the nozzle wall and also between par t ic les  of different mass  intervals  and r e s t r i c t  ourse lves  to the case  
of no external forces  or  energy sources .  In addition, we denote by m [w (m, g) - w (m)] and m [E (m, g) - 
E (m}] that par t  of the momentum and total energy of a part icle,  formed as a resul t  of coagulation of 
smal le r  par t ic les  (of mass  ~ and m - i t ) ,  which then (over distances less  than Ax) is uniformly distributed 
among all par t ic les  of the mass  interval (m, m =dm). 

Employing the assumptions and notation introduced above~ and performing cer ta in  t ransformat ions  
using the above equations, we can show that the conservat ion of momentum and energy  of the par t ic les  in the 
mass  interval (m, m+dm) leads to the relat ions 

w (m) dw (m) / dx ~ ] (m) -4- Qw (m) / n (m) 
w (m) de (m) / dx -~ q (m) + Qe (re) I n ( m )  

Q~, (m) = I [w (m, Ix) - w (m)] k (p. m -- p.) n (Ix) n (m -- Ix) dIx 
o 

m / 2  

Q~ (m) = I [E (m, Ix) - E (m)l k (Ix, m --  Ix) n (Ix) n (m -- Ix) d~ -- Q~ (m) w (m) (2.1) 
0 
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where the upper l imits in the integrals  can be replaced by m, at the same time introducing a factor  of 1/2 
in front of the integrals ,  as in going f rom (1.7) to (1.8). 

The hypothesis assumed by Grishln et al. (4) that the momentum and energy of the par t ic les ,  produced 
as a resul t  of coagulation, is uniformly distributed among all par t ic les  of the mass  interval in question is 
equivalent to the Identities 

w (m, ~) = w ~ (m, ~), E (m, ~) = E ~ (m, ~) (2.2) 

where w ~ (m, g) and E ~ (m, g) are  the veloci ty and total energy of a part icle ,  formed by the merging of 
par t ic les  with m a s s e s  #% and m - ~ .  

If as before we assume that the colliding par t ic les  move paral le l  to the nozzle axis, then the c o n s e r -  
vation of mass ,  momentum, and energy,  applied to the problem of the merging of two par t ic les ,  give 

w ~ (m, ~) = ~~ w (~) + (I - ~) w (m - ~) (2.3) 
E ~ ~  ~ (/~~ 

AS we have a l ready noted, the assumption that the pa r ame te r s  of par t ic les  in the mass  interval in 
question are  completely  smoothed out, which l ies at the base of the identities (2.2), is not the only one poss i -  
ble. If these identities are  not satisfied, then this  means that the excess  (deficient) veloci ty  and total energy 
of a newly produced part icle  in compar i son  with the cor responding  quantit ies,  descr ibing the motion of the 
o ther  par t ic les  of the given function, i.e., with w (m) and E (m), a re  t r ans f e r r ed  to the gas or  to the p a r -  
t ic les  of other mass  intervals.  It can be shown that in the case  when direct  force and the rmal  interaction 
of the par t ic les  of different mass  intervals  is insignificant, i.e., when the violation of identities (2.2) is 
caused by the "force"  interaction of the newly produced par t ic les  with the gas, the equations of motion and 
energy of the gas in the one-dimensional  approximation are  wri t ten in the form 

dw dp 
p w - ~ - + - ~ - +  m[n(m) l (m)  + Q~~ = 0 

o (2.4) 

w--ff-~ "~ dx + m { n ( m ) q ( m ) + n ( m ) [ w ( m ) - - w l I ( m ) + O ~ ~  
0 

Here  Qw ~ (m) is obtained f rom Qw (w) by substituting w ~ (m, g) for  w (m), and Qe ~ (m) f rom Qe (m) by 
substituting E ~ (m, g) for E (m), Qw ~ (m) for Qw (m) and w for w (m). 

The difference in the c h a r a c t e r  of the interaction with the gas of the newly formed par t ic les  and the 
other par t ic les  of a given mass  interval is due to the difference of the i r  veloci t ies  and t empera tu res ,  owing 
to which the force f (m) and heat flux q (m) for  par t ic les  of the f i rs t  group are  cons iderab ly  g rea te r  than 
for the second. 

We note that any of the differential equations (2.4) can be replaced by the equation 

cr 

pw~ h-{-T + m{n(m)[q(m)-l--w(m)[(m)]+Qh(m)}dm=O 
0 

(qo (m) = q o (,,~) + q o (m) ~) 

f rom which one obtains the Bernoull i  integral  in the case  of a pure gas flow. In addition, using (1.10), (2.1), 
(2.3), (2.4), and the s y m m e t r y  proper ty  of the function k (m, g), we can show that for  any w (m, g) and 
E (m, g) the following "integral"  conservat ion laws hold: 

d-"~ g (m) dm = O, pw 
0 o 

co 

d"-ff T + W g(m) E (m)dm = 0  
0 

The fact that these laws are  sat isf ied is indicative of the cons is tency of the model in question, and 
ver i fying these laws while calculating can be used for control  of the accuracy  of the calculations.  

To the equations obtained above, it is neces sa ry  to add express ions  for 0, h, e (m), f ( m ) ,  and q (m) 
in t e r m s  of the other pa r ame te r s  of the flow. We shall assume the indicated express ions  to have the form 
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9 = 9 ( P ,  T), h = h ( p ,  r) ,  e(m) =e~[T(m) l  
/ (m) = ~ . [ w  - w (m)], q (m) = ~ ' . [ T  - -  r (m)] 

~ i =  ~ [ m ,  p, T, T(m), w - - w ( m ) ] ,  i =  l, 2 
(2.5) 

Such a notation a s s u m e s ,  in pa r t i cu la r ,  the absence  of nonequil ibrium phys icochemica l  p r o c e s s e s  in the 
the gas phase.  The r ight  s ides in (2.5) a re  known functions of the i r  a rguments .  

Together  with the equations (2.2), de termining  w (m, ]z) and E (m, ~) cons is ten t  with the hypothesis  
adopted in [4] that the ene rgy  and momentum of the newly fo rmed  pa r t i c l e s  be uni formly  distr ibuted,  the 
conserva t ion  equations (1.9), (1.10), (2.1), and (2.4) and the const i tut ive re la t ions  (1.1), (1.3), (1.5), and (1.7) 
o r  (1.8), (2.3), and (2.5) f o r m  a c losed  sys tem,  which for  a given nozzle shape and under a number  of addi-  
t ional conditions (e.g., for  a given re la t ive  par t ic le  loss  W) comple te ly  desc r ibe s  the change in the flux 
p a r a m e t e r s  as  functions of x. Here  Qw ~ (m) -= Qe ~ (m) - 0 and the equations of motion and ene rgy  of the 
gas (2.4) go over  to those obtained by Grishin  et al. [4]. 

In the other  ex t r em e  case  assuming  that  the excess  momentum and energy  of the newly c r ea t ed  p a r -  
t ic les  is comple te ly  t r a n s f e r r e d  to the gas,  instead of (2.2) we obtain the equation 

w(m, ~t) = w(m), E(m,  ~) = E ( m )  (2.6) 

by v i r tue  of which the las t  t e r m s  in the momentum and energy  equations fo r  the condensate  vanish.  

3. In rea l i ty ,  the equations (2.6) a r e  never  s t r i c t ly  sat isf ied.  However ,  ff the conditions in the flow 
a re  such that  / f ( m )  and lq (m) a r e  much less  than not only a cha rac t e r i s t i c  d imension of the p rob l em L, 
but a lso  the me'an f ree  path length I (m), then the dist inction between the r ea l  si tuation and that  desc r ibed  
by these  equations will not be v e r y  great .  We note, incidentally, that if this  should take place,  then in 
der iving the flow equations we can  choose a Ax which in addition to the condit ions s t ipulated e a r l i e r  is 
g r e a t e r  than I f  (m) and lq (m). In this  connection the equations giving l (m), I f  (m), and lq (m) in t e r m s  
of the mixture  p a r a m e t e r s ,  par t ic le  s ize,  etc. a r e  of some interes t .  When obtaining these equat ions,  we 
r e s t r i c t  ou r se lves  to the r eg ime  of smal l  lag of the pa r t i c l e s  behind the gas,  which a l r eady  a s s u m e s  that 
the inequali t ies / f (m)  << L and lq (m) <<L, n e c e s s a r y  for  the val idi ty  of (2.6), a r e  sat isf ied.  In addition, 
we a s sume  that  i f ica lcula t ing  f (m) and q (m) we can  use the Stokes equations,  by v i r tue  of which the energy  
and momentum equations of an Individual par t ic le  a r e  wri t ten in the fo rm 

l! (m) dw (ra) / dx  = w - -  w (m), lq (m) d r  (m) / d x  = T - -  T (m) 
(3.1) 

s w ) e Re, lq (m) = Pr cs~ Re = wL 
9 p 

Here  Os ~ is the densi ty  of the m a t e r i a l  of the par t i c les ;  Cs ~ is the specific heat of the pa r t i c l e s  
divided by the specif ic heat of the gas  Cp; ~ is the kinematic  v i s cos i t y  of the gas;  P r  is the Prandt l  number;  
Re is the Reynolds number;  and x, / f ( m ) ,  and / q ( m )  a r e  re la t ive  to a c h a r a c t e r i s t i c  l inear  d imension L. 
In c a s e s  when P r  and cs  ~ a r e  c lose  to unity (which is usual ly the case) ,  the dynamical  and t h e r m a l  r e l a x a -  
t ion lengths a r e  of the same  order ,  as  can be seen f r o m  the equation for  lq (m). 

I f l f  (m) <<1, then f r o m  (3.1), expanding w (m) in a s e r i e s  in powers  of I f  (m), we find 

where when de te rmin ing  

w (m) = w - -  l l ( m )  d w / d z  

/ f ( m )  f r o m  (3.1), we should se t  w (m) =w. 

l(m) = 6 [ W l d l n w / d x l Y ( r n ~  Re] -a, 

<m> = Ps / N, <r> = (3 <m> / 4 • ps~ V~ 

(3.2) 

Putt ing (3.2) into (1.3) and (1.4) gives 

ra ~ = m/<m>, (3.3) 

(r) 
Here  N is  the to ta l  number  of pa r t i c l e s  pe r  unit volume,  Ps is  the i r  resu l t ing  density,  

a r e  the m a s s  and radius  of a nmeanW par t i c le ,  / (m) is in units of L, and 

J ('~~ = ~ [ r~ (m~ + r~ (ix~ I & ('~~ - tf  (ix~ I n~ (ix~ dix ~ 
0 

r ~ ~ = r(m)/ (r>,lt*(m ~ = l f ( m ) / l  t((m)), n*(ix~ n(Ix) dix/N 

(m)  and 

Owing to the definition of quanti t ies  measu red  in degrees ,  J (m ~ is a number  on the o rde r  of unity. 
In accordance  with (3.1) and (3.3) for  the ra t io  of the re laxa t ion  l e n g t h / f  (m) to the mean f ree  path length 
we obtain the equation 
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lt(m ) W p,~ dlnw j(mo)(rL)_ [r(rn)l* 

f r o m  which it is seen  that  the c a s e s  when If (m) << l (m), and, consequently,  equations (2.6) a re  val id,  a r e  
quite rea l .  On the o ther  hand, the g r e a t e r  the degree  to which the conditions If (m) << 1 and If (m) << I (m) 
a r e  violated,  the l e s s  just i f ied is the use  of the mentioned equations.  

In conclusion the au thors  would like to thank L. E. Sternin fo r  drawing the i r  at tent ion to this p roblem.  
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